首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2026篇
  免费   106篇
  国内免费   2篇
  2023年   22篇
  2022年   29篇
  2021年   78篇
  2020年   51篇
  2019年   48篇
  2018年   63篇
  2017年   63篇
  2016年   73篇
  2015年   99篇
  2014年   125篇
  2013年   139篇
  2012年   174篇
  2011年   153篇
  2010年   95篇
  2009年   73篇
  2008年   96篇
  2007年   97篇
  2006年   87篇
  2005年   66篇
  2004年   75篇
  2003年   55篇
  2002年   40篇
  2001年   26篇
  2000年   39篇
  1999年   28篇
  1998年   20篇
  1997年   12篇
  1996年   12篇
  1995年   4篇
  1994年   5篇
  1993年   7篇
  1992年   23篇
  1991年   18篇
  1990年   15篇
  1989年   15篇
  1988年   16篇
  1987年   4篇
  1986年   17篇
  1985年   12篇
  1984年   6篇
  1983年   6篇
  1982年   5篇
  1981年   3篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1977年   3篇
  1972年   4篇
  1970年   3篇
  1969年   3篇
排序方式: 共有2134条查询结果,搜索用时 46 毫秒
11.
This study reports the effects of alloxan induced diabetes on glucose metabolism enzymes viz. Hexokinase, Lactate dehydrogenase, and Glucose-6-phosphate dehydrogenase from discrete brain regions. Enzymes activity was assayed from hypothalamic areas such as medial preoptic area and median eminence-arcuate region which have gonadotropin releasing hormone cell bodies and their terminals, respectively and other brain regions like septum, amygdala, hippocampus, and thalamus. In all the areas studied, induction of diabetes resulted in a significant decrease in particulate bound HK activity, whereas soluble HK, LDH and G6PDH activity showed increase at 3, 8, 15 and 28 days intervals. Insulin treatment of diabetic rats led to recovery in enzyme activity. Blood glucose levels increased significantly after induction of diabetes and recovery was seen after insulin treatment. The present results suggest that altered cerebral glucose metabolism may also be responsible for reproductive failure observed in diabetic rats. (Mol Cell Biochem141: 97–102, 1994)  相似文献   
12.
Forskolin, an adenylate cyclase activator and a cyclic AMP analogue, dibutyryl cyclic AMP have been used to examine the relationship between intracellular levels of cyclic AMP and lipid synthesis inMycobacterium smegmatis. Total phospholipid content was found to be increased in forskolin grown cells as a result of increased cyclic AMP levels caused by activation of adenylate cyclase. Increased phospholipid content was supported by increased [14C] acetate incorporation as well as increased activity of glycerol-3-phosphate acyltransferase. Pretreatment of cells with dibutyryl cyclic AMP had similar effects on lipid synthesis. Taking all these observations together it is suggested that lipid synthesis is being controlled by cyclic AMP in mycobacteria.  相似文献   
13.
Drug-induced liver injury (DILI) is an adverse outcome of the currently used tuberculosis treatment regimen, which results in patient noncompliance, poor treatment outcomes, and the emergence of drug-resistant tuberculosis. DILI is primarily caused by the toxicity of the drugs and their metabolites, which affect liver cells, biliary epithelial cells, and liver vasculature. However, the precise mechanism behind the cellular damage attributable to first-line antitubercular drugs (ATDs), as well as the effect of toxicity on the cell survival strategies, is yet to be elucidated. In the current study, HepG2 cells upon treatment with a high concentration of ATDs showed increased perforation within the cell, cuboidal shape, and membrane blebbing as compared with control/untreated cells. It was observed that ATD-induced toxicity in HepG2 cells leads to altered mitochondrial membrane permeability, which was depicted by the decreased fluorescence intensity of the MitoRed tracker dye at higher drug concentrations. In addition, high doses of ATDs caused cell damage through an increase in reactive oxygen species production in HepG2 cells and a simultaneous reduction in glutathione levels. Further, high dose of isoniazid (50–200 mM), pyrazinamide (50–200 mM), and rifampicin (20–100 µM) causes cell apoptosis and affects cell survival during toxic conditions by decreasing the expression of potent autophagy markers Atg5, Atg7, and LC3B. Thus, ATD-mediated toxicity contributes to the reduced ability of hepatocytes to tolerate cellular damage caused by altered mitochondrial membrane permeability, increased apoptosis, and decreased autophagy. These findings further emphasize the need to develop adjuvant therapies that can mitigate ATD-induced toxicity for the effective treatment of tuberculosis.  相似文献   
14.
An understanding of the structure-function relationship of nerve growth factor (NGF) requires precise knowledge of all the residues and regions that participate in NGF receptor binding, receptor activation, and biological activity. Seven recombinant human NGF mutants having alanine substituted for residues located either in the NGF dimer interface or beta-strand region were studied to determine the role of each amino acid residue in NGF biological activity. F86A, T91A, R100A, and R103A remained nearly full active with 61, 120, 91, and 73% of wild-type activity, respectively, in the PC12 cell bioassay. Hydrophobic core and dimer interface residues Y52, F53, and F54 were studied in more detail. Y52A and F54A were expressed in very low levels, suggesting that these two residues may be important for protein stability. Y52A retained full biological activity (91%). F53A had a 20- and 70-fold reduction in biological activity and TrkA phosphorylation, respectively, with only a 5- to 10-fold effect on TrkA binding and no effect on low-affinity receptor binding. F54A had significantly decreased TrkA phosphorylation and biological activity (40-fold). The results suggest that F53 and F54 may play a structural role in TrkA receptor activation subsequent to binding.  相似文献   
15.
To obtain general rules of peptide design using α,β-dehydro-residues, a sequence with two consecutive ΔPhe-residues, Boc-L -Val-ΔPhe–ΔPhe- L -Ala-OCH3, was synthesized by azlactone method in solution phase. The peptide was crystallized from its solution in an acetone/water mixture (70:30) in space group P61 with a=b=14.912(3) Å, c= 25.548(5) Å, V=4912.0(6) Å3. The structure was determined by direct methods and refined by a full matrix least-squares procedure to an R value of 0.079 for 2891 observed [I?3σ(I)] reflections. The backbone torsion angles ?1=?54(1)°, ψ1= 129(1)°, ω1=?177(1)°, ?2 =57(1)°, ψ2=15(1)°, ω2 =?170(1)°, ?3=80(1)°, ψ3 =7(2)°, ω3=?177(1)°, ?4 =?108(1)° and ψT4=?34 (1)° suggest that the peptide adopts a folded conformation with two overlapping β-turns of types II and III′. These turns are stabilized by two intramolecular hydrogen bonds between the CO of the Boc group and the NH of ΔPhe3 and the CO of Val1 and the NH of Ala4. The torsion angles of ΔPhe2 and ΔPhe3 side chains are similar and indicate that the two ΔPhe residues are essentially planar. The folded molecules form head-to- tail intermolecular hydrogen bonds giving rise to continuous helical columns which run parallel to the c-axis. This structure established the formation of two β-turns of types II and III′ respectively for sequences containing two consecutive ΔPhe residues at (i+2) and (i+3) positions with a branched β-carbon residue at one end of the tetrapeptide.  相似文献   
16.
Cysticercosis, a disease of economic and public health importance, is caused by Cysticercus cellulosae, the metacestode stage of Taenia solium. Experimental induction of cysticercosis was achieved in young pigs by feeding an optimum dose of 20,000 T. solium (Indian strain) eggs after immunosuppression, to assess the effect of albendazole and development of the immune response to cysticercus antigens before and after treatment.

Histopathological studies revealed the presence of cysticerci in liver, lungs and muscles. Treatment with albendazole at 15 mg kg−1 body weight daily for 30 days starting from day 0 or 15 days post-infection resulted in 100% cure rates. Increases in antibody titre to crude soluble extract and a Sephadex G-200 purified antigenic fraction of Cysticercus cellulosae were found on days 25, 40 and 55 post-infection in untreated pigs and those in which treatment started on day 15 post-infection, whereas no increase in antibody response was observed in pigs in which treatment started on day 0.  相似文献   

17.
Kaur R. and Sood M. L. 1982. Haemonchus contortus: the in vitro effects of dl-tetramisole and rafoxanide on glycolytic enzymes. International Journal for Parasitology 12: 585–588. Various enzymes of glycolysis (hexokinase, phosphoglucomutase, phosphoglucoisomerase, adolase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglyceromutase-enolase-pyruvate kinase and lactate dehydrogenase) have been detected in adult Haemonchus contortus. Low pyruvate kinase and lactate dehydrogenase activities suggested an alternate pathway from phosphoenolpyruvate. In vitro incubation had no significant effects on these enzymes and the worm was able to maintain normal metabolism for 12 h. Varying degrees of inhibition of glycolytic enzymes were observed with 50 μg/ml of dl-tetramisole and rafoxanide. The enzymes were inhibited to a greater extent by dl-tetramisole. These effects may block the glycolytic pathway and deprive the parasite of its ATP production.  相似文献   
18.
Membrane protein phosphorylation may be a general regulatory mechanism mediating the response of cells to exogenous metabolic and physical signals. We have determined that the membrane-bound acetylcholine receptor is the major substrate phosphorylated in situ by a nearby membrane protein kinase. Moreover, these same membranes also contain phosphoprotein phosphatase activity which dephosphorylates the membrane-bound receptor. These findings suggest that reversible phosphorylation of the actylcholine receptor may be critical for receptor function at the synapse. Therefore, it is necessary to define the properties of the enzymes which mediate this phosphorylation-dephosphorylation mechanism. In this report we describe the properties of the first component of this system, the membrane-bound protein kinase in receptor-enriched membranes from the electric organ of Torpedo californica. Only ATP is effective as a phosphate donor for this cyclic AMP-independent membrane kinase; GTP does not support phosphorylation of the receptor. Both casein and histone can also be phosphorylated by the membrane protein kinase, but casein is a better substrate. Although phosphorylation of the receptor appears to be regulated by cholinergic ligands and K+, casein phosphorylation is not specifically affected by these agents. Moreover, while phosphorylation of the acetylcholine receptor is maximal in receptor=enriched membranes, casein phosphorylation is similar in all membrane fractions prepared from the electric organ. Taken together, these findings suggest that the membrane protein kinase activity in receptor-enriched membranes is similar to most other membrane kinases. Therefore, the unique characteristics of membrane-bound acetylcholine receptor phosphorylation appear to be determined by the receptor and its availability as a substrate for the membrane kinase.  相似文献   
19.
Peritoneal macrophages from uninfected controls and Mycobacterium leprae infected Swiss albino mice were studied for their respiratory burst (RB) activity at different time intervals. The RB metabolic activity of macrophages declined significantly after 3 month infection using latex (p less than 0.001) and M. leprae (p less than 0.01) as stimuli. However, significant rise (p less than 0.001) in the oxidative metabolic activity was seen at 6 and 9 months postinfection period on stimulation with both the stimuli. The sharp rise in the oxidative metabolic status at peak period of infection in the experimental animals suggests that the macrophages are functionally normal though M. leprae is unable to trigger the respiratory burst sufficiently.  相似文献   
20.
A plasmid-encoded anion-translocating ATPase   总被引:1,自引:0,他引:1  
An anion-translocating ATPase has been identified as the product of the arsenical resistance operon of resistance plasmid R773. When expressed in Escherichia coli this ATP-driven oxyanion pump catalyzes extrusion of the oxyanions arsenite, antimonite and arsenate. Maintenance of a low intracellular concentration of oxyanion produces resistance to the toxic agents. The pump is composed of two polypeptides, the products of the arsA and arsB genes. This two-subunit enzyme produces resistance to arsenite and antimonite. A third gene, arsC, expands the substrate specificity to allow for arsenate pumping and resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号